If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-43n=0
a = 7; b = -43; c = 0;
Δ = b2-4ac
Δ = -432-4·7·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-43}{2*7}=\frac{0}{14} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+43}{2*7}=\frac{86}{14} =6+1/7 $
| 10=-4r-r | | 9n-3=7n+3+2n | | 7n2–43n=0 | | 9x3-4x5=0 | | 9x3=4x5 | | H(x)=-4x^2+28x | | 10+(6-4)×4)=x | | (1/7)x-2=1 | | 12u-5u=35 | | 48=10y-4y | | -18x-12=-174 | | x/3=8x= | | 10x/15=6x/3 | | 12x+2=94 | | 2m+10=6m-10 | | 25x+7x=1-5x | | 96=4(4x-4) | | M2=12x+4 | | -47=-w/5 | | 5^x+1+5^x=150 | | -2w+24=4(w-3) | | 2/3c-11=37 | | y/5+14=24 | | 5.3x+625=28.09+25x | | 4•(x+3)-(1-x)=1 | | 64=4u-12 | | 2x-5-3x=7+4x | | 4/5x-3/5=3 | | 7x+(4x-25)=180 | | 4e-6e=20 | | 28x+27=-42-10 | | 2.24x+8.96=17.92 |